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SOFT RADIATION AT HADRON COLLIDERS



SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

Multiple scale problem:
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SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

• Does it matter? One can consider two regions:	


!

• threshold:	


!

• not relevant for phenomenology:	


!

• partonic threshold: 

⌧ ! 1, x1 = x2 = 1,

z ! 1, Ek ! 0.
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• It is possible to prove that the partonic threshold is dynamically enhanced, because of the 
convolution with PDFs:	


!
!

• where the PDFs are organised into the luminosity function	


!
!
!
• Enhancement of the z ➝ 1 region already for               . It must be analysed for each process.  
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SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION
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• Why needs special treatment? Have a closer look at the partonic cross section: 

• Virtual and real emission have infrared divergences, which cancel in the sum, leaving large 
(Sudakov) logarithms, which spoil reliability of the perturbative expansion. E.g. 	


!
!

• In general one has 
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SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION
• How do we deal with soft gluons? Key ideas are factorisation and exponentiation:	


!
!
!
!

• Factorization:  physics occurring at well separate scales do not “talk”	


• Exponentiation: at leading order parton does not recoil: soft interaction give just a phase. 	



!
• In Mellin space,	


!

• the log of the amplitude can be written as:  	


!
!
!

• it takes into account 	


• running of      ;	


• soft and collinear gluon radiation. 	



• In N space correctly reproduces terms ann below: 
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SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION
• What about the subleading bnn terms?	


!

• a simple ansatz succeeds in reproducing correctly some of the bnn terms:	


!
!
!
!
!
!
!
!
!
!

• indicating that exponentiation occurs at least for some of the next-to-leading terms in the soft 
gluon expansion, namely, some of the next-to-eikonal terms.	



• The ansatz can be understood noting that the singular terms arise from integration of the real 
emission diagrams over the transverse momentum of the gluon, which is better described by the 
modifications above. 	



• Additional terms C and D follow from Dokshitzer, Marchesini, Salam (2006), (Attempt to put on 
the same ground evolution of PDF and fragmentation functions).

+

Z 1

0
dz zN�1

(
1

1� z
D


↵s

✓
(1� z)2

z
Q2

◆�

+

Z (1�z)2

z Q2

Q2

dq2

q2
2

✓
z

1� z
A
⇥
↵s

�
q2
�⇤

+ C� ln(1� z) + D̄�

◆)

+

.

ln[�̂(N,↵s)] = FDY

�
↵s(Q

2)
�

Modification of the phase space

Inclusion of the next-to-
leading order in z of the 
Altarelli-Parisi Kernel

Modification of    running

Laenen, Magnea, Stavenga, 2008



SOFT RADIATION IN DRELL-YAN AND DIS
• Compare coefficients of the logs obtained with this procedure with exact result at NNLO:	


• for Drell-Yan

integrals and the modified phase space boundary. For DIS, including the one-loop
value of the function B(αs), we find that d11 = CF /2 is correctly reproduced, while
the non-logarithmic term at O(1/N) is underestimated: Eq. (37) yields d10 = CF /8,
while the exact result is d10 = 21/8 CF . We take this as evidence (to be reinforced
below) that our treatment of phase space for the final state jet is sufficiently precise to
reproduce single NE logarithms, but not enough to fix NE constants (of course at this
level non-factorizing effects for the observable, leading to a failure of exponentiation,
at least in the form of Eq. (37), may also be a source of the discrepancy).

C2
F CACF nfCF

b23 4 4 0 0 0 0

b22
7
2 4 11

6
11
6 −1

3 −1
3

b21 8ζ2 − 43
4 8ζ2 − 11 −ζ2 + 239

36 −ζ2 + 133
18 −11

9 −11
9

b20 −1
2ζ2 −

3
4 4ζ2 −7

4ζ3 + 275
216

7
4ζ3 + 11

3 ζ2 −
101
54 −19

27 −2
3ζ2 + 7

27

Table 1: Comparison of exact and resummed 2-loop coefficients for the Drell-Yan
cross section. For each color structure, the left column contains the exact results,
the right column contains the prediction from resummation.

At the two-loop level, we proceed as follows. Since our aim is to verify our ability
to reproduce NE terms, suppressed by a power of N , we include in the exponent all
terms that are required to reproduce ordinary Sudakov logarithms, i.e. the two-loop
values of the functions A(αs) and D(αs) for the Drell-Yan cross section, and of the

function B(αs) for DIS. We include the two-loop DMS-induced contributions C(2)
γ

D
(2)
γ and δP (2)(z) as well, since they are responsible for effects that originate at two

loops, and can only be reproduced by their inclusion. Our results are summarized
in Tables 1 (for the Drell-Yan cross section) and in Table 2 (for the DIS structure
function).
We observe the following.

• The leading non-vanishing NE logarithms (ln3 N̄/N for the ‘abelian’ terms
proportional to C2

F , and ln2 N̄/N for non-abelian terms) are correctly repro-
duced by the exponentiation, both for DY and for DIS, and separately for each
color structure.

• Next-to-leading NE logarithms (ln2 N̄/N for terms proportional to C2
F , and

ln N̄/N for non-abelian terms) are reproduced with remarkable accuracy for
the Drell-Yan process (in fact exactly for the nfCF color structure), and rea-
sonably well for the DIS process.

• The remaining NE logarithms, i.e. single logarithmic terms proportional to
C2

F , are well reproduced by exponentiation for the Drell-Yan process, but only

12

roughly approximated for DIS. Non-logarithmic NE corrections are not well
approximated by the exponentiation.

• More specifically, we note that for the Drell-Yan process the only source of
terms proportional to C2

F ln2 N̄/N is the DMS-induced coefficient C(2)
γ ; indeed,

the fact that b10 = 0 ensures that no such term can arise from the square of
the one-loop contribution. This contribution, yielding b22 = 4, is an excellent
approximation to the exact result, b22 = 7/2. For DIS, as might be expected,
the situation is somewhat more intricate; indeed d22 receives contributions
from three sources: the square of the one-loop exponent, C(2)

γ , and δP (2)(z);
also here, however, the final result, d22 = 55/16, is a fair approximation of the
exact answer, d22 = 39/16.

C2
F CACF nfCF

d23
1
4

1
4 0 0 0 0

d22
39
16

55
16

11
48

11
48 − 1

24 − 1
24

d21
7
4ζ2 −

49
32 −1

4ζ2 −
105
32 −5

4ζ2 + 1333
288 −1

4ζ2 + 565
288 −107

144 − 47
144

d20
15
4 ζ3 −

47
16ζ2 −3

4ζ3 + 53
16ζ2 −11

4 ζ3 + 13
48ζ2

5
4ζ3 + 7

16ζ2
1
24ζ2 −

1699
864 −1

8ζ2 + 73
864

− 431
64 − 21

64 − 17579
1728 − 953

1728

Table 2: Comparison of exact and resummed 2-loop coefficients for the DIS structure
function. For each color structure, the left column contains the exact results, the
right column contains the prediction from resummation.

Clearly, since some of the DMS modifications enter the stage at two-loops, our re-
sults verify that these contributions improve the approximation, but do not really
test exponentiation. We can put at least our DIS ansatz to a more stringent test by
comparing to the complete three-loop calculation performed by Moch, Vermaseren
and Vogt [19]. In this case, since our aim is to test exponentiation at NE level,
we have included the three-loop value of the function B(αs), contributing to single
Sudakov logarithms, but we have not included three-loop DMS-induced contribu-
tions such as C(3)

γ and δP (3)(z). We can then expect reasonable agreement only for
a limited set of NE logarithms. Since at three loops one finds six independent color
structures, up to five powers of NE logarithms, and transcendentals up to ζ5, we
do not include here the lengthy tables of coefficients, but we give the most relevant
results.

The three-loop analysis confirms that leading non-vanishing NE logarithms (in
this case ln5 N̄/N for the color structure C3

F , ln4 N̄/N for the color structures CAC2
F

and nfC2
F , and ln3 N̄/N for the color structures C2

ACF , n2
fCF and nfCACF ) are

13

• and deep inelastic scattering:

• Many logs are found, but not all: are they non-factorizing logs? Is there a way to systematise the 
resummation for 1/N logs?

Laenen, Magnea, Stavenga, 2008



EFFECTS OF RESUMMATION

JHEP07(2003)028

Figure 8: Fixed-order and resummed K-factors for Higgs production at the LHC.

figure 7 show that the corresponding cross sections (very) slightly decrease as µF increases
around MH . This is because, when increasing MH from MH = 115 GeV to MH = 400 GeV,
the cross section is sensitive to partons with higher values of the momentum fraction x, so
that scaling violation of the parton densities can become slightly negative. The fact that
the parton densities are evaluated in an x-range where scaling violation changes sign is also
suggested by the change in the slope of the µF dependence when going from LL to NLL
and NNLL order.

The impact of higher-order corrections is sometimes presented through the K-factors,
defined as the ratio of the cross section evaluated at each corresponding order over the
LO result. The K-factors are shown in figure 8, where the bands are obtained, as in
section 4.1, by varying the scales µR and µF (simultaneously and independently) in the
range 0.5MH ≤ µF , µR ≤ 2MH , with the constraint 0.5 ≤ µF /µR ≤ 2. The LO result that
normalizes the K-factors is computed at the default scale MH in all cases. We see that
the effect of the higher-order corrections increases with MH . We also see that the soft-
gluon resummation effects are more important at higher values of MH . This is expected,
since by increasing MH we are closer to the hadronic threshold, where soft-gluon effects
are larger. When MH increases, the scale dependence after resummation is smaller than
at the corresponding fixed orders. In the case of a light Higgs boson (MH ! 200 GeV),
the NNLO K-factor is about 2.1–2.2, which corresponds to an increase of about 20% with
respect to the NLO K-factor. In this low-mass range, the effects of resummation are also
moderate: at NNLL accuracy the central value of the cross section increases by about 6%
with respect to NNLO.

In figure 9 we plot the NNLO and NNLL cross sections, with the corresponding scale-
dependence bands (computed as in figure 8), in the range MH =100–300 GeV. The corre-
sponding numerical results are given in table 1, where σmin, σmax and σref correspond to
the minimum, maximum and central values in the bands.
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Figure 9: Fixed-order (Y < 0) versus resummed (Y > 0) predictions for the rapidity distribu-
tion at

√
s = 38.76 GeV and two values of M , at different orders in perturbation theory. The

bands reflect the combined scale dependence. LO bands are light, NLO bands are medium,
NNLO bands are dark.

is not an important effect. This is in stark contrast to the conclusion reached in [15]. For
the higher mass M = 16 GeV, the two NNLO bands are consistent with each other at central
rapidity, but the resummed result is significantly higher than the fixed-order prediction for
Y ! 0.3. For the integrated cross section at this value of M , threshold resummation enhances
the fixed-order value by about 7%. This can be seen from Table 2, which shows our final
predictions for the integrated cross section dσ/dM2. Besides the results obtained with and
without resummation, we also give the contributions of the resummed threshold terms alone,
corresponding to the first term in (61).

5.4 Resummation in moment space

Traditionally, resummation is performed in moment rather than momentum space [9, 10]. For
the Drell-Yan cross section integrated over rapidity one takes moments in τ at fixed M :

σN =

∫ 1

0

dτ τN−1 dσ

dM2
. (62)

For the moment-space analysis of the rapidity distribution one performs a Fourier transform
in the rapidity in addition to taking moments in τ [13, 15]. In the following, we will restrict
ourselves to the integrated cross section for simplicity. Using the representation (12), the cross
section in moment space factorizes as

σN =
4πα2

3NcM4

∑

q

e2
q

[
f q/N1

N+1 f q̄/N2

N+1 + (q ↔ q̄)
]
CN+1(M

2, µf) , (63)

where the moments of the hard-scattering coefficient and the PDFs are defined in analogy
with (62). In order to accomplish the resummation for the moments of the hard-scattering
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Figure 8: Resummed (solid lines) versus fixed-order results (dashed lines) for the K-factor as
a function of M . The light, medium, and dark lines correspond to LO, NLO, and NNLO,
respectively. Default values are used for all scales.

large values of M .

5.3 Rapidity distribution and cross section at
√

s = 38.76 GeV

As a final application, we now return to the rapidity distribution in Drell-Yan production at√
s = 38.76 GeV. As mentioned in the Introduction, in this case large resummation effects

were found for M = 8 GeV [15] even though τ ≈ 0.04 is very small. These effects were claimed
to reduce the NLO fixed-order cross section by about 30%. Fixed-order predictions for the
rapidity distribution up to NNLO were discussed in [5, 6]. Here we present results for the two
cases M = 8 and 16GeV. In order to obtain the best possible predictions we combine our
resummed result for the cross section with the power-suppressed terms calculated in fixed-order
perturbation theory. In our approach this matching can be implemented in a straightforward
way as follows:

dσcombined

dM2dY
=

dσthresh

dM2dY

∣∣∣∣
µh,µs,µf

+

(
dσfixed order

dM2dY

∣∣∣∣
µf

−
dσthresh

dM2dY

∣∣∣∣
µh=µs=µf

)

. (61)

In Figure 9, we compare our RG-improved results with the fixed-order results, varying the
scales over the ranges M/2 < µf < 2M , M < µh < 2M , and µI

s < µs < µII
s . The bands

reflect the variations about the default value. In the fixed-order case only the first variation
is relevant, while in the resummed case we add the individual variations in quadrature.

We observe again that resummation significantly accelerates the convergence of the per-
turbative expansion. Moreover, even though in the resummed case we include the scale de-
pendence from the variation of three different scales, the combined uncertainty at NLO and
NNLO is significantly smaller than in the fixed-order case. Also, given the better overlap of
the bands in the resummed case, our error estimates appear to be more conservative. As a
final comment, we note that for M = 8GeV the resummed results at NLO and NNLO are
consistent within errors with the fixed-order results, indicating that threshold resummation
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Becher, Neubert, 2007

Catani, De Florian, 
Grazzini, Nason, 2003



EFFECTS OF RESUMMATION

LN(N)/N TERMS

Can be numerically important

We know that the leading series lni(N)/N exponentiates

by replacing  in resummation formula

4

Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander
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Schemes    contains sub-leading logs�

LN(N)/N TERMS

Can be numerically important

We know that the leading series lni(N)/N exponentiates

by replacing  in resummation formula

4

Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander
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FACTORIZATION AT THE EIKONAL LEVEL

Soft-collinear factorization

✦ Factorize cross section:

✦ Define components in 
terms of field theory 
objects in SCET

✦ Resum large Sudakov 
logarithms directly in 
momentum space using 
RG equations 

H

J J

J J

S

d� ⇥ H({sij}, µ)
Y

i

Ji(M2
i , µ)� S({�2

ij}, µ)

Sen 1983; Kidonakis, Oderda, Sterman 1998



SOFT RADIATION AT THE EIKONAL LEVEL

• Consider the emission of n (abelian) gluons from a fermion line: 	


!
!

• Consider one of the propagators: when k is soft expand	


!
!
!

• Consider leading order (eikonal):	


!
!

• Eikonal identity gives: 	


!
!

• This is equivalent to an effective Feynman rule for soft gluon emission: 

k1 k2 kn

p
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E
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X
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1
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p · (k⇡1 + . . .+ k⇡n)
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X
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km

= uncorrelated emission

Laenen, Magnea, 
Stavenga, White, 2010



SOFT RADIATION AT THE EIKONAL LEVEL: ABELIAN
• A matrix element (squared) involves soft interactions 

between two external lines:

A

B

G

...

...

...

...

...

...

...

• Sum over possible connected subdiagrams, each occurring Ni times: 	


!
!
!

• This is actually an exponential:  
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• One can only  sums over permutations that do not affect the 
orderings of gluons within groups. The eikonal identity modifies 
according to

• In case of non-abelian gluons, one has to face the non-commutative color matrices associated 
with each emission. We need to introduce first the concept of groups and webs: 

SOFT RADIATION AT THE EIKONAL LEVEL: NON-ABELIAN

X

⇡̃

1

p · k⇡̃1

1

p · (k⇡̃1 + k⇡̃2)
. . .

1

p · (k⇡̃1 + . . .+ k⇡̃n)

=
Y

groups g

1

p · kg1
1

p · (kg1 + kg2)
. . .

1

p · (kg1 + . . .+ kgm)
.

• Repeating the exercise (using induction, combinatorics and recursive definition of the color 
weights), one finds the replacement

• Web: two-eikonal irreducible 
diagram.	



• Group: projection of a web 
onto a single eikonal line.

FAB =

X

G

cG E(G) = exp

(
X

H

c̄H E(H)

)
.

=

+

“shuffle product”



• To give more feeling with abelian vs. non-abelian “webs”: consider soft form factor:

SOFT RADIATION AT THE EIKONAL LEVEL

...    =exp

Abelian

non-Abelian

CF

�CA

2
CF

...

Color factors associated 
with non-abelian webs:

Gatheral, 1983;	


Frenkel, Taylor, 1984



FACTORIZATION AT THE NEXT-TO-EIKONAL LEVEL

Soft-collinear factorization

✦ Factorize cross section:

✦ Define components in 
terms of field theory 
objects in SCET

✦ Resum large Sudakov 
logarithms directly in 
momentum space using 
RG equations 

H

J J

J J

S

d� ⇥ H({sij}, µ)
Y

i

Ji(M2
i , µ)� S({�2

ij}, µ)

Sen 1983; Kidonakis, Oderda, Sterman 1998

?



• Ready to go: at the next-to-eikonal (NE) level one needs to take into account one NE insertion 
for each diagram. Consider for simplicity a fermion line with two-gluon emissions: 

SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

• Expanding in the soft gluon momenta one get

✓
p/+ q/+ k/

(p+ q + k)2
�⌫ p/+ q/

(p+ q)2
�µ +

p/+ q/+ k/

(p+ q + k)2
�µ p/+ k/

(p+ k)2
�⌫

◆
u(p),

pµ

p · k
p⌫

p · k +
p⌫

p · k

✓
q/�µ

2p · q � q2pµ

2(p · q)2

◆
+

pµ

p · q

✓
k/�⌫

2p · k � k2p⌫

2(p · k)2

◆

+
p⌫kµ(p · q) + pµq⌫(p · k)� (p · k)(p · q)gµ⌫ � pµp⌫(q · k)

p · (q + k)p · kp · q ,

k⌫ qµ k⌫qµ



• Emission splits into different contributions (abelian case):

SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

• VNE is a factorized product of an eikonal and a NE emission: the Dirac structure denote that at 
NE soft gluon emission are sensititive to the spin (magnetic moment) of the emitter. VNE may 
involve sums over more gluon momenta.	


!

• R gives an effective two-gluon vertex not present in the original theory. The two-gluon emission 
cannot be disentangled.

V µ
E (p, k) =

pµ

p · k ,

V µ⌫
NE(p, k) =

p⌫

p · k

✓
q/�µ

2p · q � q2pµ

2(p · q)2

◆
,

Rµ⌫(p, q, k) =
p⌫kµ(p · q) + pµq⌫(p · k)� (p · k)(p · q)gµ⌫ � pµp⌫(q · k)

p · (q + k)p · kp · q .

k⌫ k⌫ k⌫ k⌫qµ qµ qµ qµ



SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

• What does it imply for exponentiation? Remember that the key element for exponentiation at 
the eikonal level is the eikonal identity,	


!
!

• In the same notation, it is possible to prove that, at the NE level,  	


!
!
!
!

• Proof by induction, considering separately individual terms in the Feynman rules written in the 
last slide.  Based on this results, it is possible to prove that soft real emission exponentiate:

X

⇡

E(⇡) =
Y

g

E(g)

X

⇡

NE(⇡) =
X

h

2

4NE(h)
Y

g 6=h

E(g)

3

5+
X

g 6=h

2

4R(g, h)
Y

f 6=g,h

E(f)

3

5 .

X

G

cG

h
E(G) + NE(G)

i
= exp

"
X

H

c̄H (E(H) + NE(H))

#

= exp

"
X

H

c̄H E(H)

#2

4
1 +

X

K

c̄K NE(K) +

X

K,L

c̄K c̄L R(K,L)

3

5 .

Laenen, Magnea, 
Stavenga, White, 2010



SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

• Webs can be computed by means of effective Feynman rules: (here also for scalar particles)

...

= tA
⇣2Gµ

i � kµ

2p ·Gi
� G2

i p
µ

2(p ·Gi)2

⌘
=

tA

2p ·Gi

⇣
Gµ

i +Gµ
i+1 �

G2
i p

µ

p ·Gi

⌘
,

= tA
⇣2Gµ

i + �µk/

2p ·Gi
� G2

i p
µ

2(p ·Gi)2

⌘
=

tA

2p ·Gi

⇣
Gµ

i +Gµ
i+1 + k/ �µ � kµ � G2

i p
µ

p ·Gi

⌘
,

=
gµ⌫ {tA, tB}
p · (k + l)

+
[�µ, �⌫ ]

⇥
tA, tB

⇤

2p · (k + l)
,

= tA ⌦ tB
✓�Gµ

i p
⌫ (p ·Hj) � H⌫

j pµ (p ·Gi) + pµp⌫ Gi ·Hj

2p · (Gi +Hj) p ·Gi p ·Hj

◆

=
gµ⌫ {tA, tB}
2p · (k + l)

p+Gi p+Gi+1

p+Gi p+Gi+1

k

k

k

k

Gi Hi

p

p

p

l

l
Laenen, Magnea, 
Stavenga, White, 2010



• check result for NNLO real emission in Drell-Yan, calculated using the effective Feynman rules 
above: 

SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

K(1)
eik (z) =

↵s

4⇡
CF

(
� 8

✏
D0(z) + 16D1(z)�

8 log(z)

1� z

� 4✏


4D2(z)� 3⇣2D0(z)�

4 log z log(1� z)

(1� z)
+

log

2 z

1� z

�)
,

K(1)
NE(z) =

↵s

4⇡
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(
8

✏
� 16 log(1� z) + 8 log z

� 4✏
⇥
�4 log

2
(1� z) + 4 log z log(1� z)� log

2 z + 3⇣2
⇤
)
,

Laenen, Magnea, 
Stavenga, White, 2010
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1

�(0)

d�(n)(z)

dz

K(0)(z) = �(1� z)
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log

p
(1� z)

1� z

����
+



SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

2
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2
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NE SOFT RADIATION: VIRTUAL + REAL EMISSION

• Is this the end of the story? No: at NNLO, one has to face virtual + real radiation. 	


!
!
!
!
!
!
!
!
!
!
!
!

• Virtual radiation cannot be described in terms of soft gluon only. 	


!

• Building an effective field theory describing the process requires one to individuate the relevant 
momentum modes. This can be done easily by means of a momentum region analysis.



NE SOFT RADIATION: VIRTUAL + REAL EMISSION
• Decompose momenta along the light-cone directions of the external momenta: 	


!
!

• External momenta have definite scaling in the small parameter                     :	


!
!
!
!
!
!
!

• Virtual gluon can scale according to: 	


!
!
!
!
!
!
!

• Expand amplitude in the small parameters appearing in each region.

lµ = (n�l)
nµ
+

2
+ (n+l)

nµ
�
2

+ l?, ) l ⇠ (n�l, l?, n+l), n2
+ = n2

� = 0, n� · n+ = 2.

� =

s
E

softp
ŝ

pµ = n�p
nµ
+

2
=

p
ŝ
nµ
+

2
, ) p ⇠ (1, 0, 0);

p̄µ = n+p̄
nµ
�
2

=
p
ŝ
nµ
�
2

, ) p̄ ⇠ (0, 0, 1);

k2 ⇠
p
ŝ

2
(�2,�2,�2), p · p̄ =

ŝ

2

Hard: k1 ⇠
p
ŝ

2
(1, 1, 1);

Collinear: k1 ⇠
p
ŝ

2
(1,�,�2);

Anti-collinear: k1 ⇠
p
ŝ

2
(�2,�, 1);

Soft: k1 ⇠
p
ŝ

2
(�2,�2,�2).



NE SOFT RADIATION: VIRTUAL + REAL EMISSION

• Calculation can be automatised with FORM; loop integrals in each region are quite easy. 	


• One finds that contributions arise from the region where the internal gluon is hard or collinear: 

KNNLO
tot

E, h (z) =
↵s

4⇡
CF

⇢
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✏3
+
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�
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KNNLO
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✏
� 36 log
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�
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⇢
� 40� 32
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40� 48 log(1� z)
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2
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�
.

• The sum reproduces the full QCD result. 	


• Similar conclusion obtained in the context of Higgs production by Anastasiou, Duhr, Dulat, 

Herzog, Mistlberger, 2013.



NE SOFT RADIATION: VIRTUAL + REAL EMISSION

• The momentum region analysis (and old results, see below) shows that there are contributions 
from the region where the internal gluon is hard or collinear: schematically 

• This contribution (emission of a soft gluon from the hard vertex) cannot occur at the eikonal 
level, because the Compton Wavelenght of the soft photon cannot resolve the hard interaction.	


!

• They occur at the NE level, however, and have been studied by Low for massive scalars,  then 
generalised to spinors by Burnett, Kroll, and then generalised to the case of small mass by Del 
Duca (1990). Here we need the limit m ➝ 0. 

)

Low, 1958; 	


Brunett, Kroll, 1968;	


Del Duca, 1990



NE SOFT RADIATION: VIRTUAL + REAL EMISSION

• Consider factorisation of the quark form factor: (Collins, Korchemsky)	


!
!
!

• where the soft function collects infrared singularities associated with the eikonal term in the 
momentum expansion of emitted gluons, 	


!
!

• and the partonic jet functions are defined as	


!
!
!
!
!

• where         is a wavefunction for the external parton, and the auxiliary vector n ensures that 
the definition is gauge-covariant. One must divide by eikonal jet functions in order to avoid the 
double-counting of soft and collinear contributions. 

�
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NE SOFT RADIATION: VIRTUAL + REAL EMISSION

• The structure of the internal emission can be derived following Del Duca 1990: One split this 
contribution according to	


!
!

• (emission from the hard and jet functions respectively). Using Ward identities and introducing 
the “G” and “K” polarisation tensor:	


!
!

• the complete (K+G) emission from the hard function can be combined with the K emission for 
the jet, to give	


!
!

• i.e., internal emission contributions are generated by derivatives acting on the hard function with 
no emission, which in a sense shows an iterative structure as well. The remaining G-emission 
from the current reads	


!
!

• which is not simply given by derivatives acting on the hard function, but depends on a universal 	


• function as well.
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• Calculation of 	


!
!
!
!

• is non trivial:

Jµ

✓
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,↵s(µ

2), ✏; k

◆
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����
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• Calculation is non trivial, but one expect a relatively simple result! 	



• For instance, n-dependence must cancel from the full result, and we expect it to occur already at 
the level of the amplitude: 	


!

• this gives already quite some strong constraints on the structure of the result. 	



• However, this simplicity is not apparent in the calculation: for instance, one cannot expand in k2 
before integration over k1: the integrals become ill-defined. Similarly, one encounters problems 
assuming some special choice of n, such as n2 = 0.   	



• Result for      is completed. For instance	


!
!
!
!
!
!

!
• where, for instance, 

✏µ(k) (�
⌫
J(K⌫

µ +G⌫
µ) + �µ

H)

Jµ

Jµ
[4] =i2g3sC

⇢
pµ


4p · n(I [4]0 � 2I [4]11 + I [4]22 )� 2n2(I [4]13 � I [4]26 )

�
+ kµ2


4p · n(I [4]25 � I [4]12 ) + 2n2I [4]27

�

+ k/2�
µ


� 2p · n(I [4]0 � I [4]11 ) + n2I [4]13

�
+ �µn/


2p · k2(I [4]12 � I [4]25 )� (d� 2)I [4]21 � 2n · k2I [4]27

�

+ n/�µ


� 2p · n(I [4]13 � I [4]26 ) + n2I [4]24

�
� 2pµk/2n/


I [4]12 � I [4]25

�
+ 2kµ2 k/2n/


I [4]23 + I [4]12

�
+ 2nµk/2n/


I [4]27

��
u(p).



NE SOFT RADIATION: VIRTUAL + REAL EMISSION

(I [4]0 � 2I [4]11 + I [4]22 ) =
1

✏2

⇢
� 1

8p · k2p · n

�
+

1

✏

⇢
� 2�

log

⇣
n2

4(p·n)2

⌘

8p · k2 p · n

�

+

�48 + 11⇡2

96p · k2 p · n
+

3n2 p · k2 � 4⇡2 n2 p · k2 + 6n · k2 p · n
12p · k2 (p · n)3

� n2
log(2p · k2)2

4(p · n)3 +

log(2p · k2)2

8p · k2 p · n

�
(3n2 p · k2 � n · k2 p · n) log

⇣
n2

(2p·n)2

⌘

4p · k2 (p · n)3
�

n2
log

⇣
n2

(2p·n)2

⌘2

4(p · n)3 +

log

⇣
n2

(2p·n)2

⌘2

16p · k2 p · n

+

log(2p · k2)
⇣
1 + log

⇣
n2

(2p·n)2

⌘⌘

4p · k2 p · n

+

log(2p · k2)
⇣
�3n2 p · k2 + n · k2 p · n� 2n2 p · k2 log

⇣
n2

(2p·n)2

⌘⌘

4p · k2 (p · n)3
,

(I [4]13 � I [4]26 ) =� ⇡2

6(p · n)2 � log(2p · k2)2

8(p · n)2) �
log

⇣
n2

(2p·n)2

⌘

2(p · n)2 �
log

⇣
n2

(2p·n)2

⌘2

8(p · n)2

�
log(2p · k2)

⇣
2 + log

⇣
n2

(2p·n)2

⌘⌘

4(p · n)2 ,

. . .

• Note: preliminar! 



OUTLOOK

• Soft gluons exponentiate at leading (eikonal) order. Their resummation is important to get 
precise prediction for scattering processes at hadron colliders. 	


!

• It has been observed that some of the logs originating from soft gluon at the sub-leading order 
(NE) exponentiate, too. Their inclusion can be phenomenologically relevant. 	


!

• We prove that soft gluon emission from external energetic partons exponentiate at the NE 
level, too, provided one extends the standard description in terms of soft gluon webs, 
introducing next-to-eikonal webs.	


!

• We analysed Drell-Yan at NNLO, showing that reproducing all the logs at the NE level requires 
taking into account soft gluon emission from the hard and the hard-collinear interaction.	


!

• This can be implemented in the contest of the Low-Burnett-Kroll-Del Duca formulation of 
factorisation at the sub-leading order. Verification that all the logs can be reproduced in this 
framework is in progress.
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• For                becomes 	


!
!

• While for 	


!
!
!
• The z integral receives important contributions from the region                               with b~10. 	


!

• Even for τ values not near 1 there is a parametric enhancement of the partonic threshold region, 
which turns the threshold logarithms into logarithms of the exponent b.
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